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Background: Maps of influenza activity are important tools to monitor influenza epi-
demics and inform policymakers. In France, the availability of a high-quality data set 
from the Oscour® surveillance network, covering 92% of hospital emergency depart-
ment (ED) visits, offers new opportunities for disease mapping. Traditional geostatis-
tical mapping methods such as Kriging ignore underlying population sizes, are not 
suited to non-Gaussian data and do not account for uncertainty in parameter 
estimates.
Objective: Our objective was to create reliable weekly interpolated maps of influ-
enza activity in the ED setting, to inform Santé publique France (the French national 
public health agency) and local healthcare authorities.
Methods: We used Oscour® data of ED visits covering the 2016-2017 influenza sea-
son. We developed a Bayesian model-based geostatistical approach, a class of gener-
alized linear mixed models, with a multivariate normal random field as a spatially 
autocorrelated random effect. Using R-INLA, we developed an algorithm to create 
maps of the proportion of influenza-coded cases among all coded visits. We com-
pared our results with maps obtained by Kriging.
Results: Over the study period, 45 565 (0.82%) visits were coded as influenza cases. 
Maps resulting from the model are presented for each week, displaying the posterior 
mean of the influenza proportion and its associated uncertainty. Our model per-
formed better than Kriging.
Conclusions: Our model allows producing smoothed maps where the random noise 
has been properly removed to reveal the spatial risk surface. The algorithm was in-
corporated into the national surveillance system to produce maps in real time and 
could be applied to other diseases.

K E Y W O R D S

geographic mapping, influenza, public health surveillance, spatial analysis

www.wileyonlinelibrary.com/journal/irv
http://orcid.org/0000-0002-5143-6256
http://creativecommons.org/licenses/by/4.0/
mailto:juliette.paireau@gmail.com
mailto:juliette.paireau@gmail.com


2  |     PAIREAU et al.

1  | INTRODUC TION

At least three million people are severely affected by seasonal in-
fluenza each year, leading to substantial morbidity and mortality 
and inducing important stress on healthcare structures.1 Seasonal 
influenza can result in patient overload in secondary healthcare set-
tings, in particular hospital emergency departments (EDs). During 
these epidemics, it is essential for healthcare authorities to have at 
their disposal an accurate representation of the localized risk of in-
fluenza, ideally in real time, to wisely adjust the healthcare offer by 
increasing bed capacity, reallocating human resources or postponing 
nonurgent care. As part of a surveillance toolbox, maps of influenza 
activity could prove useful in such context. Disease maps provide 
a visual summary of complex geographic information, to facilitate 
interpretation of the data, to highlight existing patterns across space 
and to identify areas of elevated risk.2 Beyond their importance for 
surveillance and decision-making, disease maps can also be inter-
esting communication tools towards clinicians, partners, healthcare 
managers and the general public. Because of their visual and intui-
tive appeal, maps released in official surveillance reports are often 
published by mainstream media during outbreaks.3,4

Generating reliable disease maps requires two important fea-
tures: the availability of high-quality data and the use of sound 
statistical methods. Epidemiological surveillance is often based on 
sentinel systems, in which a network of selected general practi-
tioners (GPs) or healthcare facilities report cases. Sentinel surveil-
lance systems have made it possible to considerably improve our 
understanding of epidemic dynamics. For instance, surveillance 
data from the French Sentinelles network was used to quantify the 
impact of school closure on influenza epidemics.5 However, some 
challenging aspects remain while working with sentinel data, such 
as the small proportion of participating GPs, irregular reporting and 
coarse spatial resolution. The availability of new types of standard-
ized data on hospital ED visits offers new opportunities. In France, 
the Oscour® network, a syndromic surveillance system, represents a 
complementary source of disease surveillance data, covering 92% of 
all emergency hospital visits in the country, with automatic and near 
real-time transmission of individual-level data.6 It does not monitor 
influenza in the general population but makes it possible to obtain a 
very detailed picture of influenza activity in secondary health care, 
by providing high-quality data with larger volume, higher spatial res-
olution and fewer reporting delays.

When working with spatial point data, the objective of disease 
mapping is often to predict the continuous (ie, interpolated) risk 
surface of the disease over the study region, where the noise has 
been properly filtered. Due to the complex nature of spatial data and 
management of uncertainty in the estimates, the generation of such 
maps requires the use of appropriate statistical methods. In geosta-
tistics, the most widely used tool, known as Kriging, allows to carry 
out spatial interpolation or smoothing of observed values, by con-
structing a linear predictor for unobserved values of a continuous 
spatial process and estimating the covariance structure of the data 
with a tool known as the variogram.7,8 However, traditional Kriging is 

less appropriate when considering non-Gaussian outcomes (eg, dis-
ease counts or proportions) and does not account fully for inherent 
uncertainties, such as those arising from the uneven distribution of 
underlying population and those associated with estimating the var-
iogram parameters.9 Despite these limitations, Kriging is still used to 
map influenza activity.10-12

We propose to rely on an alternative statistical approach, 
Bayesian model-based geostatistics (MBG), a class of generalized 
linear mixed models, with a multivariate normal random field as a 
spatially autocorrelated random effect. Our objective was to create 
reliable weekly interpolated maps of influenza activity in the ED 
setting in France using emergency hospital data from the Oscour® 
network, to inform Santé publique France, the French national pub-
lic health agency, and local healthcare authorities. We developed an 
algorithm to routinely produce weekly maps that can be used as sur-
veillance, decision-making and communication tools, and integrated 
it into MASS, a web application used at Santé publique France for 
monitoring influenza activity.13 Although this model was developed 
for influenza in France, the methodological framework we describe 
in this study could be more widely applied, both to other diseases 
and to other surveillance systems.

2  | DATA

Following the 2003 heat wave in France, Santé publique France set 
up a new syndromic surveillance system, which included the Oscour® 
network (“Organisation de la Surveillance Coordonnée des Urgences,” 
Coordinated Health Surveillance of Emergency Departments), based 
on hospital EDs. The creation of this network was motivated by the 
need to provide high-quality information to public health authorities 
to help with evidence-based decision-making and to have a real-time 
assessment of the situation in secondary health care.14 This surveil-
lance network has already been described elsewhere.6,13 Briefly, data 
are collected directly from patients’ computerized medical files filled 
in during medical consultations. For each patient, the collected data 
include date, age, gender, zip code, ED identification number, reason 
for emergency visit, main and associated medical diagnosis based on 
the tenth edition of the International Classification of Diseases (ICD-
10), and whether the patient was admitted for hospitalization after 
discharge. Encrypted data are transmitted daily to Santé publique 
France. All hospital discharge records are anonymous and are pro-
cessed in line with national patient confidentiality rules.

The number of hospital EDs participating in the network regu-
larly increased over time, from 23 in its creation in 2004 to 688 in 
2017. It covered 92% of all hospital visits in France in 2017, with at 
least one ED per administrative district (French “départements”) on 
the metropolitan territory (5.8 on average per district) and a mean 
daily volume of about 50 000 visits. As a case study, we used data 
from 7 November 2016 to 2 April 2017, covering the 2016-2017 
season of influenza epidemic in France. The study focused on met-
ropolitan France. Details on geographic data are provided in Section 
1 in Appendix S1.
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We included influenza-coded cases, which gathered visits with 
ICD-10 codes J09, J10 and J11 as clinical diagnosis. We used, as a 
measure of risk, the weekly proportion of influenza-coded cases 
among all coded visits, which comprises visits with all diagnostic 
types: diseases, accidents, injuries, etc. This indicator allowed us to 
account for the variability in the volumes of visits among EDs and 
over time. We used the number of coded visits as a denominator 
rather than the total number of visits (coded and noncoded), so that 
the measured risk is not biased by the proportion of coding, which 
can vary over space and time (Section 2 in Appendix S1).

3  | MODEL

3.1 | Modelling framework

Our objective was to create weekly continuous surfaces of influ-
enza activity in metropolitan France, using point-referenced data at 
each ED locations. Geostatistics capitalize on the spatial correlation 
between observations to carry out spatial interpolation or smooth-
ing of the attribute of interest, filtering the noise in the observa-
tions and highlighting existing patterns. The basis of our approach 
is a body of theory known as Bayesian MBG.15 MBG combine the 
efficiency of classical geostatistical interpolation algorithms for 
spatial prediction with the formalization and flexibility of general-
ized linear modelling and allow the application of Bayesian methods 
of statistical inference for parameter estimation and spatial predic-
tion.16 Uncertainty is rigorously handled at all stages of the model-
ling process.

3.2 | Model description

In the geostatistical framework, the point-referenced data are reali-
zations of an underlying spatial process (or random field) {U(s), s ∈ D} 
characterized by a spatial index s which varies continuously in the 
fixed domain D. Here, the location s was a two-dimensional vector 
with latitude and longitude. For each week, we assumed that our 
observations (number of influenza-coded cases) available at n spa-
tial locations and represented by the vector y = (y(s1),…, y(sn)), where 
the set (s1,…, sn) indicates the locations of EDs, followed a binomial 
distribution:

with Ni the total number of coded visits in location i and pi the influ-
enza probability for location i. The linear predictor was defined as 
the logistic transformation of pi and included an intercept α, a ran-
dom effect represented by U(si) which is the realization of a random 
field U at the location si and an unstructured random error (residual 
noise) ei:

The component ei was modelled as Gaussian with zero mean and 
variance �2

e
. The random field was modelled as a Gaussian field (GF), 

so that the vector (U(s1),…,U(sn)) followed a multivariate normal distri-
bution with zero mean and spatially structured covariance matrix Σ:

The covariance matrix Σ was defined by the Matérn spatial co-
variance function:

where ‖ si - sj ‖   is the Euclidean distance between two locations 
si and sj and σ2 is the marginal variance. The term Kλ denotes the 
modified Bessel function of the second kind and order λ > 0. The 
parameter λ measures the degree of smoothness of the process and 
is usually kept fixed due to poor identifiability. Conversely, κ > 0 is a 
scaling parameter related to the spatial range r, that is the distance 
at which the spatial correlation becomes almost null (ie, <0.1) via the 
empirically derived definition r≈

√
8�

�
.17 Bayesian specification was 

then completed by assigning prior distributions to parameters and 
hyperparameters (Section 3 in Appendix S1).

3.3 | Implementation

The model was implemented using the integrated nested Laplace 
approximation (INLA) method introduced by Rue et al,18 which pro-
vides fast and reliable calculations of posterior marginal distribu-
tions, avoiding time-consuming MCMC simulations. First, the model 
was fitted to the ED data and the parameters of the spatial model 
were estimated. Then, the posterior mean and standard deviation 
for the response variable were predicted at each pixel of a regular 
grid covering France. We used a grid of 2 km resolution (572 × 530 
pixels) to obtain a smooth posterior surface. Every week was fit-
ted independently. All stages were coded using the R-INLA pack-
age (www.r-inla.org). Model theory and implementation in R have 
already been thoroughly described.18-20 We provide a summary of 
key features and the R code for the model in Section 3 in Appendix 
S1. Two complementary maps were generated: in the first map, we 
used the posterior mean of the proportion of influenza-coded cases 
as a point estimate for each pixel, while in the second map, we rep-
resented the coefficient of variation (relative standard deviation) 
to highlight areas with more or less uncertainty. The coefficient of 
variation is a standardized measure of dispersion of a probability 
distribution and is defined as the ratio of the standard deviation to 
the mean. It shows the extent of variability in relation to the mean.

3.4 | Model assessment

First, to assess how well the MBG model fitted the data, we rep-
resented the observed values against the fitted values at the 
observation level (ED), and computed Pearson’s linear correla-
tion coefficient. Second, to further assess the accuracy of the 

y(si)∼B(Ni,pi)

logit(pi)=�+U(si)+ei

U(s)∼MVN(0,Σ)

Σij=Cov(U(si),U(sj))=
�
2

Γ(�)2�−1
(�‖si−sj‖)�K�

(�‖si−sj‖)

http://www.r-inla.org


4  |     PAIREAU et al.

spatial prediction method, we compared the observed proportion 
of influenza-coded cases at the district level (N = 96) to the grid 
predictions averaged by district. Three statistics were computed: 
Pearson’s linear correlation coefficient, the mean error (same unit 
as the data), which indicates whether the predictions are biased 
by being on average too low or too high, and the mean absolute 
error, which measures the average magnitude of prediction errors. 
Third, we checked that our model was not overfitting the data, by 
comparing the predictions made by the full model (ie, the model 
with all observations) at the ED locations, to the predictions made 
when each observation is, in turn, removed from the model (leave-
one-out predictions). If the predictions are close, it means that the 
interpolated surface is not too sensitive to the data and that the 
model is able to predict the smoothed proportion of influenza-
coded cases in an unsampled location. We compared the MBG re-
sults with those obtained using Kriging, the traditional method for 
spatial interpolation and smoothing of point data. Details can be 
found in Section 4 in Appendix S1.

4  | RESULTS

Over the study period (7 November 2016-2 April 2017) in metropoli-
tan France, 5 589 477 visits were coded in the Oscour® database, 
representing 74.1% of all visits (coded and noncoded). Among the 
coded visits, 0.82% (N = 45 565) were classified as influenza cases. 
The influenza epidemic lasted 10 weeks, from week 49 of 2016 
(December 5-11) to week 6 of 2017 (February 6-12) (Figure 1).21

We present detailed results for 3 weeks during the ascending 
phase of the epidemic (December 5-25, 2016), when having good 
estimations in real time is the most important for decision-makers 
(Figure 1). Among the 645 EDs which provided data through the 
Oscour® surveillance network during these 3 weeks, 509 (78.9%) 
coded at least one influenza case. The mean number of coded visits 
per ED per week was 462 (interquartile range [IQR] 212-649). The 

mean proportion of influenza-coded cases among all coded visits 
increased from 0.45% in week 49 to 0.80% in week 50 and 1.69% 
in week 51 (Figure 1). Figure 2 presents the maps resulting from 
our geostatistical model for these 3 weeks. The maps for the en-
tire study period are provided in Section 5 in Appendix S1. Over the 
season, the highest proportions were mostly observed in densely 
populated regions, around Lyon and Marseille in the southeast quar-
ter of France, followed by the Parisian region (Figure 2 and Section 
5 in Appendix S1). The epidemic started in these more urbanized 
regions and then quickly expanded to the whole country. The map of 
the coefficient of variation allows highlighting the areas where the 
relative uncertainty in the predictions was the highest. These were 
mostly areas in the centre of France, as well as along borders, with 
fewer data points and/or low number of visits in sparsely populated 
areas. The uncertainty was lower in urban areas with higher con-
centrations of populations and hospitals. Posterior means and 95% 
credible intervals for the model parameters are provided in Table 1. 
The posterior mean of the range was 168 km for week 49, indicating 
that the spatial correlation became negligible beyond this distance. 
It increased to 176 and 227 km for weeks 50 and 51, respectively.

Figure 3 presents the three scatterplots used for model assess-
ment. Regarding the fit of the MBG model (inference stage), the 
Pearson correlation coefficient between the observed and fitted 
values at the ED locations for the 3 weeks was 0.94, indicating excel-
lent linear agreement (Figure 3A). Regarding the spatial predictions, 
when comparing the observed and predicted mean proportions at 
the district level, the Pearson correlation coefficient was 0.80 and 
the mean prediction error was −0.00016, in units of the influenza 
proportion (−0.016%), indicating no systematic bias in the predicted 
rates (Figure 3B). The mean absolute error was 0.0032. The mean 
proportion of influenza-coded cases predicted by the model at the 
district level was 0.84%, with an IQR between 0.39 and 1.06, com-
pared to 0.85% with an IQR between 0.29 and 1.15 for the observed 
proportion. This indicates a shrinkage of extreme values towards the 
global mean, an expected result due to spatial smoothing. Finally, 
the Pearson correlation coefficient between the predictions of the 
full model at the ED locations and the leave-one-out predictions 
was 0.98, with a mean error of 0.0007 and a mean absolute error of 
0.0012 (Figure 3C). Overall, our model performed better than the 
standard Kriging method (Section 4 in Appendix S1). In particular, 
Kriging predictions at the district level underestimated influenza ac-
tivity (mean error of -0.25%, 15 times higher than the MBG mean 
error) and the correlation coefficient for the leave-one-out predic-
tions at the ED locations was lower (r = 0.84) than with the MBG 
model.

5  | DISCUSSION

Disease maps are more and more often used in infectious diseases 
epidemiology, as they are efficient surveillance and control tools. 
However, due to the complex nature of spatial data and manage-
ment of uncertainty in the estimates, the generation of such maps 

F IGURE  1 Weekly proportion of influenza-coded cases 
among all coded visits by hospital emergency departments of the 
Oscour® network during the 2016-2017 influenza season in France. 
Stars show the 3 weeks for which detailed results and maps are 
presented. The dashed grey lines delimit the epidemic period.
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must be performed with care to provide an unbiased representa-
tion of disease spatial patterns. Here, we have developed a Bayesian 
geostatistical model to create weekly maps of influenza activity in 

the ED setting in metropolitan France. Our model allows produc-
ing smoothed maps where the random noise has been properly re-
moved to reveal the spatial risk surface, and is not constrained by 

F IGURE  2 Maps for weeks 49, 50 and 51 of 2016. A, Observed proportion of influenza-coded cases at each ED locations; B, Posterior 
mean of predicted proportion on the 2 × 2 km grid; C, Relative uncertainty associated with the predicted proportion, quantified using the 
coefficient of variation and ordered into quintiles such that areas in quintile one have the smallest uncertainty and quintile five the largest. 
Grey borders delimit administrative districts (N = 96).
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administrative boundaries. This makes the interpretation of the data 
easier. The model has been incorporated into the national syndromic 
surveillance system, as described below. We provided the R code 
so that the model can be more widely applied to other countries or 
diseases.

Spatial interpolation of disease rates can be performed using a 
variety of simple techniques, including inverse distance-weighted 
methods, splines or trend polynomial surfaces. The main limitations 
of these deterministic methods is that they do not provide a mea-
sure of the reliability of the predictions and do not take advantage of 
the spatial structure of the variable.10,22 In 1992, Carrat and Valleron 
were the first to apply Kriging to the spatial analysis of an infectious 
disease. At that time, Kriging was a real improvement over the ex-
isting approaches as it made use of the spatial correlation between 
observations and allowed for estimation of the interpolation error.10 
However, traditional Kriging is not well suited to the analysis of dis-
ease rates as it does not take into account the underlying population 
size, while rates computed from sparsely populated areas tend to be 
less reliable,22 and works best for data that follow a normal distribu-
tion, which is hardly fulfilled with counts or proportions.23 Indeed, 
non-Gaussian observations can affect the variogram estimate and 
lead to incorrect conclusions, as shown by our supporting analy-
sis. Although trans-Gaussian Kriging can be used to overcome this 
issue,7 we showed that, in our case, the Kriging predictions were less 

accurate than the MBG predictions and that Kriging may underesti-
mate uncertainty in the predictions. Uncertainty attached to model 
parameters is indeed ignored in the analysis, which typically leads to 
too small prediction variances.24 To overcome the issues associated 
with standard Kriging, we chose to use a Bayesian model-based geo-
statistical approach. Other alternatives have been proposed, such 
as using Poisson kriging22 or assessing variogram uncertainty in a 
Bayesian framework.25 Bayesian geostatistical models such as the 
one developed in this study are appropriate for non-Gaussian data, 
by specifying an explicit stochastic model, and yield the full posterior 
distribution of the risk while accounting for the uncertainty in the 
model parameters (such as the shape of the covariance function). 
They have been shown to be valuable methodologies for generating 
predictive prevalence and risk maps for malaria,16,26 shistosomiasis27 
or poverty,28 among others. In our model, the spatial dependence 
was defined using a Matérn covariance function. We observed that 
the spatial range r, a parameter of this covariance function, was in-
creasing during the ascending phase of the epidemic, as the epidemic 
spread through the country and the affected areas become larger. As 
spatial correlation is mainly due to population connectivity between 
locations, parameters of a mechanistic model explicitly describing 
flows of individuals would be fixed over time. But here, this under-
lying mechanism is approximated with a phenomenological model, 
leading r to vary over time.

Parameter Week 49 Week 50 Week 51

Intercept, α −6.50 (−6.32, −5.81) −5.55 (−5.84, −5.30) −4.70 (−4.94, −4.47)

Standard deviation of 
the noise, σe

0.74 (0.62, 0.88) 0.71 (0.61, 0.81) 0.51 (0.39, 0.68)

Spatial range of the 
GF, r (km)

168 (81, 326) 176 (94, 310) 227 (119, 411)

Marginal standard 
deviation of the GF, σ

0.57 (0.40, 0.77) 0.64 (0.47, 0.91) 0.62 (0.56, 0.70)

TABLE  1 Posterior mean (95% credible 
interval) of the model’s parameters for 
3 weeks in December 2016

F IGURE  3 Model assessment for weeks 49-51. A, Scatterplot of fitted and observed proportions of influenza-coded cases, at each ED 
locations. For scale reasons, one outlier was not represented on the graph: observed proportion of 100% (1 influenza-coded case among 
1 coded visit) for a predicted proportion of 5%; B, Scatterplot of predicted and observed proportions, averaged at the district level; C, 
Scatterplot of predictions of the full model at ED locations and the leave-one-out predictions. Point size is weighted by the number of all 
coded visits. The dashed line is the bisector.
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Beyond the implementation of an appropriate statistical meth-
odology, generating reliable disease maps also requires the avail-
ability of high-quality data. In this study, we have used the Oscour® 
network, which gathers daily data from ED visits in France. The data 
are automatically extracted from the computerized medical files that 
are filled by clinicians as part of their routine activities, and transmit-
ted every day, avoiding the reporting delays that can impair other 
surveillance systems, without requiring additional efforts from cli-
nicians provided that they have a business software for emergency 
medicine. This gives a very detailed picture of the daily situation in 
secondary health care all over the country, this information being 
of great importance for healthcare managers. Although this surveil-
lance might have suffered from limited spatial representativeness in 
some regions during its first years of existence,29 the network now 
includes 92% of all visits and gives a satisfactory coverage of the 
metropolitan territory in all regions. As our model is able to produce 
good estimates in unsampled locations, we are confident that our 
maps are representative of the spatial risk surface in all regions, with 
good spatial resolution.

In this study, we used as a risk indicator the proportion of 
influenza-coded cases among all coded visits, as previously carried 
out by others.30,31 This allowed us to account for the variability in 
the volumes of visits among EDs, and the proportion of coding, 
which can vary over space and time (Section 2 in Appendix S1). 
One limitation of this measure of risk is its sensitivity to the “case 
mix,” that is the variability in the number of noninfluenza cases, 
which can bias the proportion of influenza-coded cases if unusual 
variations are observed. The number of noninfluenza cases did not 
display large temporal variations over the study period and there-
fore should not substantially affect the observed trends (Section 2 
in Appendix S1). However, we cannot rule out that the proportion 
of influenza-coded cases might be impacted by the spatial varia-
tions in the case mix. The ICD-10 codes used to classify cases as 
influenza are not perfectly sensitive nor specific to influenza but 
we have no reason to think that coding practices significantly dif-
fered among EDs. In addition, the proportion of influenza-coded 
cases is a mixture of the true influenza risk in the general popula-
tion and the care-seeking behaviours, which depend on (a) the se-
verity of the virus (ED surveillance systems tend to capture more 
severe cases), (b) the ease of access to an ED (the risk might be 
underestimated in areas where access to EDs is more difficult, due 
to lower density of health services and longer travel time to hos-
pitals) and (c) the socioeconomic status (the risk might be overes-
timated in neighbourhoods with lower socioeconomic status that 
have no access to a GP). Thus, our maps must be primarily seen as 
the spatial representation of the influenza risk in the ED setting. 
This data set is complementary to another influenza surveillance 
system, the Sentinelles network of volunteer GPs, which monitors 
influenza consultations in general practice and produces maps 
using Kriging.10 It has been shown that data from both sources 
followed similar temporal patterns.6 Spatial patterns, however, are 
not expected to be directly comparable. First, they do not mea-
sure the same risk and populations are different regarding age 

distribution and severity profiles.13 Second, the Oscour® network 
generates a larger volume of data (number of cases is five times 
higher than in the Sentinelles network) and has a better spatial 
resolution (on average ~650 participating EDs by week, compared 
to ~260 GPs participating in the Sentinelles network by week).32 
Third, the Sentinelles maps are produced by applying Kriging to 
incidence estimated at the district level (ie, only 96 spatial points), 
without taking into account their precision (which depends on the 
number of participating GPs by district).10

For our results to efficiently support surveillance and be ac-
cessible to public health professionals, it is essential that they are 
integrated in an effective information flow where data are gath-
ered, analysed and reported on a weekly basis. This is performed 
through the intranet online application, called MASS, which has 
been developed by Santé publique France to provide their epi-
demiologists with an easy access to up-to-date surveillance data 
from specific and syndromic surveillance systems and to the re-
sults of statistical analyses of the epidemiologic risk.13 One aim 
of this study was to complete this surveillance tool by developing 
automated disease mapping. The algorithm that we developed in 
R was thus added to MASS so that weekly disease maps can now 
be visualized. Along with the smoothed influenza activity map, the 
algorithm output also provides an uncertainty map. Indeed, it is 
important that scientists better communicate about uncertainties 
in model estimates as this might potentially affect interpretation 
of the data. Uncertainty in our results arises from at least four 
sources: low density of data sources in some areas, low volume 
of visits in some EDs, uncertainty in the spatial parameters and 
inherent spatial heterogeneity in influenza proportions that occurs 
over short spatial scale and that cannot be explained by the data 
and modelling approaches. This latter component of variation is 
captured as “noise” (randomness) by the geostatistical model and 
the smoothing process causes the loss of local details of the spatial 
variation in risk. But the model ensures that the degree of ran-
domness is measured and incorporated in the predicted posterior 
distributions at each pixel.16

This framework can be the basis for future developments, to in-
clude the temporal dimension, as well as population movements and 
connectivity for instance. Our algorithm could also be easily applied 
to other countries or any other diseases monitored by a surveillance 
system where cases are geographically referenced. Although our 
approach was mainly descriptive, with the aim of supporting surveil-
lance, further research should aim at developing methods for pre-
dicting influenza activity in the ED setting in order to support local 
healthcare planning.
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