
Influenza Other Respi Viruses. 2018;1–8.	 		 	 | 	1wileyonlinelibrary.com/journal/irv

 

Received:	17	April	2018  |  Revised:	9	July	2018  |  Accepted:	18	July	2018
DOI:	10.1111/irv.12599

O R I G I N A L  A R T I C L E

Mapping influenza activity in emergency departments in 
France using Bayesian model- based geostatistics

Juliette Paireau1,2,3  | Camille Pelat4 | Céline Caserio-Schönemann4 |  
Isabelle Pontais4 | Yann Le Strat4 | Daniel Lévy-Bruhl4 | Simon Cauchemez1,2,3

This	is	an	open	access	article	under	the	terms	of	the	Creative	Commons	Attribution	License,	which	permits	use,	distribution	and	reproduction	in	any	medium,	
provided	the	original	work	is	properly	cited.
©	2018	The	Authors.	Influenza and Other Respiratory Viruses	Published	by	John	Wiley	&	Sons	Ltd.

1Mathematical	Modelling	of	Infectious	
Diseases	Unit,	Institut	Pasteur,	Paris,	France
2Centre	National	de	la	Recherche	
Scientifique,	UMR2000:	Génomique	
évolutive,	modélisation	et	santé	(GEMS),	
Paris,	France
3Center	of	Bioinformatics,	Biostatistics	and	
Integrative	Biology,	Institut	Pasteur,	Paris,	
France
4Santé	publique	France,	French	National	
Public	Health	Agency,	Saint-Maurice,	France

Correspondence:	Juliette	Paireau,	Unité	de	
Modélisation	Mathématique	des	Maladies	
Infectieuses,	Institut	Pasteur,	28	rue	du	Dr	
Roux,	75015	Paris,	France	(juliette.paireau@
gmail.com).

Funding information
LabEx	“Integrative	Biology	of	Emerging	
Infectious	Diseases	(IBEID)”,	Grant/Award	
Number:	ANR-10-LABX-62-IBEID

Background:	Maps	of	influenza	activity	are	important	tools	to	monitor	influenza	epi-
demics	and	inform	policymakers.	In	France,	the	availability	of	a	high-	quality	data	set	
from	the	Oscour®	surveillance	network,	covering	92%	of	hospital	emergency	depart-
ment	(ED)	visits,	offers	new	opportunities	for	disease	mapping.	Traditional	geostatis-
tical	mapping	methods	such	as	Kriging	 ignore	underlying	population	sizes,	are	not	
suited	 to	 non-	Gaussian	 data	 and	 do	 not	 account	 for	 uncertainty	 in	 parameter	
estimates.
Objective:	Our	objective	was	to	create	reliable	weekly	 interpolated	maps	of	 influ-
enza	activity	in	the	ED	setting,	to	inform	Santé	publique	France	(the	French	national	
public	health	agency)	and	local	healthcare	authorities.
Methods:	We	used	Oscour®	data	of	ED	visits	covering	the	2016-	2017	influenza	sea-
son.	We	developed	a	Bayesian	model-	based	geostatistical	approach,	a	class	of	gener-
alized	 linear	mixed	models,	with	 a	multivariate	 normal	 random	 field	 as	 a	 spatially	
autocorrelated	random	effect.	Using	R-	INLA,	we	developed	an	algorithm	to	create	
maps	of	the	proportion	of	 influenza-	coded	cases	among	all	coded	visits.	We	com-
pared	our	results	with	maps	obtained	by	Kriging.
Results:	Over	the	study	period,	45	565	(0.82%)	visits	were	coded	as	influenza	cases.	
Maps	resulting	from	the	model	are	presented	for	each	week,	displaying	the	posterior	
mean	 of	 the	 influenza	 proportion	 and	 its	 associated	 uncertainty.	 Our	model	 per-
formed	better	than	Kriging.
Conclusions:	Our	model	allows	producing	smoothed	maps	where	the	random	noise	
has	been	properly	removed	to	reveal	the	spatial	risk	surface.	The	algorithm	was	in-
corporated	 into	the	national	surveillance	system	to	produce	maps	 in	real	time	and	
could	be	applied	to	other	diseases.
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1  | INTRODUC TION

At	 least	 three	million	people	are	severely	affected	by	seasonal	 in-
fluenza	 each	 year,	 leading	 to	 substantial	 morbidity	 and	 mortality	
and	 inducing	 important	 stress	on	healthcare	 structures.1	 Seasonal	
influenza	can	result	in	patient	overload	in	secondary	healthcare	set-
tings,	 in	 particular	 hospital	 emergency	 departments	 (EDs).	 During	
these	epidemics,	it	is	essential	for	healthcare	authorities	to	have	at	
their	disposal	an	accurate	representation	of	the	localized	risk	of	in-
fluenza,	ideally	in	real	time,	to	wisely	adjust	the	healthcare	offer	by	
increasing	bed	capacity,	reallocating	human	resources	or	postponing	
nonurgent	care.	As	part	of	a	surveillance	toolbox,	maps	of	influenza	
activity	 could	prove	useful	 in	 such	context.	Disease	maps	provide	
a	 visual	 summary	 of	 complex	 geographic	 information,	 to	 facilitate	
interpretation	of	the	data,	to	highlight	existing	patterns	across	space	
and	to	identify	areas	of	elevated	risk.2	Beyond	their	importance	for	
surveillance	 and	 decision-	making,	 disease	maps	 can	 also	 be	 inter-
esting	communication	tools	towards	clinicians,	partners,	healthcare	
managers	and	the	general	public.	Because	of	their	visual	and	intui-
tive	appeal,	maps	released	in	official	surveillance	reports	are	often	
published	by	mainstream	media	during	outbreaks.3,4

Generating	 reliable	 disease	 maps	 requires	 two	 important	 fea-
tures:	 the	 availability	 of	 high-	quality	 data	 and	 the	 use	 of	 sound	
statistical	methods.	Epidemiological	 surveillance	 is	often	based	on	
sentinel	 systems,	 in	 which	 a	 network	 of	 selected	 general	 practi-
tioners	 (GPs)	or	healthcare	 facilities	 report	cases.	Sentinel	 surveil-
lance	 systems	 have	made	 it	 possible	 to	 considerably	 improve	 our	
understanding	 of	 epidemic	 dynamics.	 For	 instance,	 surveillance	
data	from	the	French	Sentinelles	network	was	used	to	quantify	the	
impact	 of	 school	 closure	on	 influenza	 epidemics.5	However,	 some	
challenging	aspects	 remain	while	working	with	sentinel	data,	 such	
as	the	small	proportion	of	participating	GPs,	irregular	reporting	and	
coarse	spatial	resolution.	The	availability	of	new	types	of	standard-
ized	data	on	hospital	ED	visits	offers	new	opportunities.	In	France,	
the	Oscour®	network,	a	syndromic	surveillance	system,	represents	a	
complementary	source	of	disease	surveillance	data,	covering	92%	of	
all	emergency	hospital	visits	in	the	country,	with	automatic	and	near	
real-	time	transmission	of	individual-	level	data.6	It	does	not	monitor	
influenza	in	the	general	population	but	makes	it	possible	to	obtain	a	
very	detailed	picture	of	influenza	activity	in	secondary	health	care,	
by	providing	high-	quality	data	with	larger	volume,	higher	spatial	res-
olution	and	fewer	reporting	delays.

When	working	with	spatial	point	data,	the	objective	of	disease	
mapping	 is	 often	 to	 predict	 the	 continuous	 (ie,	 interpolated)	 risk	
surface	of	 the	disease	over	 the	study	 region,	where	 the	noise	has	
been	properly	filtered.	Due	to	the	complex	nature	of	spatial	data	and	
management	of	uncertainty	in	the	estimates,	the	generation	of	such	
maps	requires	the	use	of	appropriate	statistical	methods.	In	geosta-
tistics,	the	most	widely	used	tool,	known	as	Kriging,	allows	to	carry	
out	spatial	 interpolation	or	smoothing	of	observed	values,	by	con-
structing	a	 linear	predictor	 for	unobserved	values	of	a	continuous	
spatial	process	and	estimating	the	covariance	structure	of	the	data	
with	a	tool	known	as	the	variogram.7,8	However,	traditional	Kriging	is	

less	appropriate	when	considering	non-	Gaussian	outcomes	(eg,	dis-
ease	counts	or	proportions)	and	does	not	account	fully	for	inherent	
uncertainties,	such	as	those	arising	from	the	uneven	distribution	of	
underlying	population	and	those	associated	with	estimating	the	var-
iogram	parameters.9	Despite	these	limitations,	Kriging	is	still	used	to	
map	influenza	activity.10-12

We	 propose	 to	 rely	 on	 an	 alternative	 statistical	 approach,	
Bayesian	 model-	based	 geostatistics	 (MBG),	 a	 class	 of	 generalized	
linear	mixed	models,	with	 a	multivariate	normal	 random	 field	 as	 a	
spatially	autocorrelated	random	effect.	Our	objective	was	to	create	
reliable	 weekly	 interpolated	 maps	 of	 influenza	 activity	 in	 the	 ED	
setting	in	France	using	emergency	hospital	data	from	the	Oscour® 
network,	to	inform	Santé	publique	France,	the	French	national	pub-
lic	health	agency,	and	local	healthcare	authorities.	We	developed	an	
algorithm	to	routinely	produce	weekly	maps	that	can	be	used	as	sur-
veillance,	decision-	making	and	communication	tools,	and	integrated	
it	 into	MASS,	a	web	application	used	at	Santé	publique	France	for	
monitoring	influenza	activity.13	Although	this	model	was	developed	
for	influenza	in	France,	the	methodological	framework	we	describe	
in	this	study	could	be	more	widely	applied,	both	to	other	diseases	
and	to	other	surveillance	systems.

2  | DATA

Following	the	2003	heat	wave	in	France,	Santé	publique	France	set	
up	a	new	syndromic	surveillance	system,	which	included	the	Oscour® 
network	(“Organisation	de	la	Surveillance	Coordonnée	des	Urgences,”	
Coordinated	Health	Surveillance	of	Emergency	Departments),	based	
on	hospital	EDs.	The	creation	of	this	network	was	motivated	by	the	
need	to	provide	high-	quality	information	to	public	health	authorities	
to	help	with	evidence-	based	decision-	making	and	to	have	a	real-	time	
assessment	of	the	situation	in	secondary	health	care.14	This	surveil-
lance	network	has	already	been	described	elsewhere.6,13	Briefly,	data	
are	collected	directly	from	patients’	computerized	medical	files	filled	
in	during	medical	consultations.	For	each	patient,	the	collected	data	
include	date,	age,	gender,	zip	code,	ED	identification	number,	reason	
for	emergency	visit,	main	and	associated	medical	diagnosis	based	on	
the	tenth	edition	of	the	International	Classification	of	Diseases	(ICD-	
10),	and	whether	the	patient	was	admitted	for	hospitalization	after	
discharge.	 Encrypted	 data	 are	 transmitted	 daily	 to	 Santé	 publique	
France.	All	hospital	discharge	records	are	anonymous	and	are	pro-
cessed	in	line	with	national	patient	confidentiality	rules.

The	number	of	hospital	EDs	participating	 in	the	network	regu-
larly	increased	over	time,	from	23	in	its	creation	in	2004	to	688	in	
2017.	It	covered	92%	of	all	hospital	visits	in	France	in	2017,	with	at	
least	one	ED	per	administrative	district	(French	“départements”)	on	
the	metropolitan	territory	(5.8	on	average	per	district)	and	a	mean	
daily	volume	of	about	50	000	visits.	As	a	case	study,	we	used	data	
from	 7	November	 2016	 to	 2	 April	 2017,	 covering	 the	 2016-	2017	
season	of	influenza	epidemic	in	France.	The	study	focused	on	met-
ropolitan	France.	Details	on	geographic	data	are	provided	in	Section	
1	in	Appendix	S1.
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We	included	 influenza-	coded	cases,	which	gathered	visits	with	
ICD-	10	codes	J09,	J10	and	J11	as	clinical	diagnosis.	We	used,	as	a	
measure	 of	 risk,	 the	 weekly	 proportion	 of	 influenza-	coded	 cases	
among	 all	 coded	 visits,	 which	 comprises	 visits	 with	 all	 diagnostic	
types:	diseases,	accidents,	injuries,	etc.	This	indicator	allowed	us	to	
account	for	the	variability	 in	the	volumes	of	visits	among	EDs	and	
over	 time.	We	used	 the	 number	 of	 coded	 visits	 as	 a	 denominator	
rather	than	the	total	number	of	visits	(coded	and	noncoded),	so	that	
the	measured	risk	is	not	biased	by	the	proportion	of	coding,	which	
can	vary	over	space	and	time	(Section	2	in	Appendix	S1).

3  | MODEL

3.1 | Modelling framework

Our	objective	was	 to	 create	weekly	 continuous	 surfaces	of	 influ-
enza	activity	in	metropolitan	France,	using	point-	referenced	data	at	
each	ED	locations.	Geostatistics	capitalize	on	the	spatial	correlation	
between	observations	to	carry	out	spatial	interpolation	or	smooth-
ing	of	 the	attribute	of	 interest,	 filtering	 the	noise	 in	 the	observa-
tions	and	highlighting	existing	patterns.	The	basis	of	our	approach	
is	a	body	of	theory	known	as	Bayesian	MBG.15	MBG	combine	the	
efficiency	 of	 classical	 geostatistical	 interpolation	 algorithms	 for	
spatial	prediction	with	the	formalization	and	flexibility	of	general-
ized	linear	modelling	and	allow	the	application	of	Bayesian	methods	
of	statistical	inference	for	parameter	estimation	and	spatial	predic-
tion.16	Uncertainty	is	rigorously	handled	at	all	stages	of	the	model-
ling	process.

3.2 | Model description

In	the	geostatistical	framework,	the	point-	referenced	data	are	reali-
zations	of	an	underlying	spatial	process	(or	random	field)	{U(s), s ∈ D} 
characterized	by	a	spatial	 index	s	which	varies	continuously	 in	the	
fixed	domain	D.	Here,	the	location	s	was	a	two-	dimensional	vector	
with	 latitude	 and	 longitude.	 For	 each	week,	we	 assumed	 that	 our	
observations	 (number	of	 influenza-	coded	cases)	available	at	n	spa-
tial	locations	and	represented	by	the	vector	y =	(y(s1),…,	y(sn)),	where	
the	set	(s1,…,	sn)	indicates	the	locations	of	EDs,	followed	a	binomial	
distribution:

with	Ni	the	total	number	of	coded	visits	in	location	i and pi	the	influ-
enza	probability	 for	 location	 i.	The	 linear	predictor	was	defined	as	
the	logistic	transformation	of	pi	and	included	an	intercept	α,	a	ran-
dom	effect	represented	by	U(si)	which	is	the	realization	of	a	random	
field	U	at	the	location	si	and	an	unstructured	random	error	(residual	
noise)	ei:

The	component	ei	was	modelled	as	Gaussian	with	zero	mean	and	
variance �2

e
.	The	random	field	was	modelled	as	a	Gaussian	field	(GF),	

so	that	the	vector	(U(s1),…,U(sn))	followed	a	multivariate	normal	distri-
bution	with	zero	mean	and	spatially	structured	covariance	matrix	Σ:

The	covariance	matrix	Σ	was	defined	by	the	Matérn	spatial	co-
variance	function:

where	 ‖	si	-		sj	‖		 is	 the	 Euclidean	 distance	 between	 two	 locations	
si and sj and σ2	 is	 the	marginal	 variance.	The	 term	Kλ	 denotes	 the	
modified	Bessel	 function	 of	 the	 second	 kind	 and	 order	 λ > 0. The 
parameter	λ	measures	the	degree	of	smoothness	of	the	process	and	
is	usually	kept	fixed	due	to	poor	identifiability.	Conversely,	κ > 0	is	a	
scaling	parameter	related	to	the	spatial	range	r,	that	is	the	distance	
at	which	the	spatial	correlation	becomes	almost	null	(ie,	<0.1)	via	the	
empirically	 derived	 definition	 r≈

√
8�

�
.17	 Bayesian	 specification	was	

then	completed	by	assigning	prior	distributions	 to	parameters	and	
hyperparameters	(Section	3	in	Appendix	S1).

3.3 | Implementation

The	model	was	 implemented	using	 the	 integrated	nested	Laplace	
approximation	(INLA)	method	introduced	by	Rue	et	al,18 which pro-
vides	 fast	 and	 reliable	 calculations	of	 posterior	marginal	 distribu-
tions,	avoiding	time-	consuming	MCMC	simulations.	First,	the	model	
was	fitted	to	the	ED	data	and	the	parameters	of	the	spatial	model	
were	estimated.	Then,	the	posterior	mean	and	standard	deviation	
for	the	response	variable	were	predicted	at	each	pixel	of	a	regular	
grid	covering	France.	We	used	a	grid	of	2	km	resolution	(572	×	530	
pixels)	 to	obtain	 a	 smooth	posterior	 surface.	 Every	week	was	 fit-
ted	 independently.	All	 stages	were	coded	using	 the	R-	INLA	pack-
age	 (www.r-inla.org).	Model	 theory	and	 implementation	 in	R	have	
already	been	thoroughly	described.18-20	We	provide	a	summary	of	
key	features	and	the	R	code	for	the	model	in	Section	3	in	Appendix	
S1.	Two	complementary	maps	were	generated:	in	the	first	map,	we	
used	the	posterior	mean	of	the	proportion	of	influenza-	coded	cases	
as	a	point	estimate	for	each	pixel,	while	in	the	second	map,	we	rep-
resented	 the	 coefficient	 of	 variation	 (relative	 standard	 deviation)	
to	highlight	areas	with	more	or	less	uncertainty.	The	coefficient	of	
variation	 is	 a	 standardized	measure	of	 dispersion	of	 a	 probability	
distribution	and	is	defined	as	the	ratio	of	the	standard	deviation	to	
the	mean.	It	shows	the	extent	of	variability	in	relation	to	the	mean.

3.4 | Model assessment

First,	to	assess	how	well	the	MBG	model	fitted	the	data,	we	rep-
resented	 the	 observed	 values	 against	 the	 fitted	 values	 at	 the	
observation	 level	 (ED),	 and	 computed	 Pearson’s	 linear	 correla-
tion	 coefficient.	 Second,	 to	 further	 assess	 the	 accuracy	 of	 the	

y(si)∼B(Ni,pi)

logit(pi)=�+U(si)+ei

U(s)∼MVN(0,Σ)

Σij=Cov(U(si),U(sj))=
�
2

Γ(�)2�−1
(�‖si−sj‖)�K�

(�‖si−sj‖)

http://www.r-inla.org
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spatial	prediction	method,	we	compared	the	observed	proportion	
of	 influenza-	coded	cases	at	 the	district	 level	 (N	=	96)	 to	 the	grid	
predictions	averaged	by	district.	Three	statistics	were	computed:	
Pearson’s	linear	correlation	coefficient,	the	mean	error	(same	unit	
as	 the	data),	which	 indicates	whether	 the	predictions	are	biased	
by	being	on	average	too	 low	or	too	high,	and	the	mean	absolute	
error,	which	measures	the	average	magnitude	of	prediction	errors.	
Third,	we	checked	that	our	model	was	not	overfitting	the	data,	by	
comparing	the	predictions	made	by	the	full	model	 (ie,	 the	model	
with	all	observations)	at	the	ED	locations,	to	the	predictions	made	
when	each	observation	is,	in	turn,	removed	from	the	model	(leave-	
one-	out	predictions).	If	the	predictions	are	close,	it	means	that	the	
interpolated	surface	is	not	too	sensitive	to	the	data	and	that	the	
model	 is	 able	 to	 predict	 the	 smoothed	 proportion	 of	 influenza-	
coded	cases	in	an	unsampled	location.	We	compared	the	MBG	re-
sults	with	those	obtained	using	Kriging,	the	traditional	method	for	
spatial	 interpolation	and	smoothing	of	point	data.	Details	can	be	
found	in	Section	4	in	Appendix	S1.

4  | RESULTS

Over	the	study	period	(7	November	2016-	2	April	2017)	in	metropoli-
tan	France,	5	589	477	visits	were	coded	 in	 the	Oscour®	database,	
representing	74.1%	of	all	 visits	 (coded	and	noncoded).	Among	 the	
coded	visits,	0.82%	(N	=	45	565)	were	classified	as	influenza	cases.	
The	 influenza	 epidemic	 lasted	 10	weeks,	 from	 week	 49	 of	 2016	
(December	5-	11)	to	week	6	of	2017	(February	6-	12)	(Figure	1).21

We	 present	 detailed	 results	 for	 3	weeks	 during	 the	 ascending	
phase	of	 the	 epidemic	 (December	5-	25,	 2016),	when	having	 good	
estimations	 in	real	 time	 is	 the	most	 important	 for	decision-	makers	
(Figure	1).	 Among	 the	 645	 EDs	 which	 provided	 data	 through	 the	
Oscour®	 surveillance	 network	 during	 these	 3	weeks,	 509	 (78.9%)	
coded	at	least	one	influenza	case.	The	mean	number	of	coded	visits	
per	ED	per	week	was	462	(interquartile	range	[IQR]	212-	649).	The	

mean	 proportion	 of	 influenza-	coded	 cases	 among	 all	 coded	 visits	
increased	from	0.45%	in	week	49	to	0.80%	in	week	50	and	1.69%	
in	 week	 51	 (Figure	1).	 Figure	2	 presents	 the	 maps	 resulting	 from	
our	 geostatistical	model	 for	 these	 3	weeks.	 The	maps	 for	 the	 en-
tire	study	period	are	provided	in	Section	5	in	Appendix	S1.	Over	the	
season,	 the	 highest	 proportions	were	mostly	 observed	 in	 densely	
populated	regions,	around	Lyon	and	Marseille	in	the	southeast	quar-
ter	of	France,	followed	by	the	Parisian	region	(Figure	2	and	Section	
5	 in	Appendix	 S1).	 The	 epidemic	 started	 in	 these	more	 urbanized	
regions	and	then	quickly	expanded	to	the	whole	country.	The	map	of	
the	coefficient	of	variation	allows	highlighting	the	areas	where	the	
relative	uncertainty	in	the	predictions	was	the	highest.	These	were	
mostly	areas	in	the	centre	of	France,	as	well	as	along	borders,	with	
fewer	data	points	and/or	low	number	of	visits	in	sparsely	populated	
areas.	 The	uncertainty	was	 lower	 in	 urban	 areas	with	 higher	 con-
centrations	of	populations	and	hospitals.	Posterior	means	and	95%	
credible	intervals	for	the	model	parameters	are	provided	in	Table	1.	
The	posterior	mean	of	the	range	was	168	km	for	week	49,	indicating	
that	the	spatial	correlation	became	negligible	beyond	this	distance.	
It	increased	to	176	and	227	km	for	weeks	50	and	51,	respectively.

Figure	3	presents	the	three	scatterplots	used	for	model	assess-
ment.	 Regarding	 the	 fit	 of	 the	MBG	model	 (inference	 stage),	 the	
Pearson	 correlation	 coefficient	 between	 the	 observed	 and	 fitted	
values	at	the	ED	locations	for	the	3	weeks	was	0.94,	indicating	excel-
lent	linear	agreement	(Figure	3A).	Regarding	the	spatial	predictions,	
when	comparing	 the	observed	and	predicted	mean	proportions	at	
the	district	 level,	the	Pearson	correlation	coefficient	was	0.80	and	
the	mean	prediction	error	was	−0.00016,	 in	units	of	 the	 influenza	
proportion	(−0.016%),	indicating	no	systematic	bias	in	the	predicted	
rates	 (Figure	3B).	The	mean	absolute	error	was	0.0032.	The	mean	
proportion	of	influenza-	coded	cases	predicted	by	the	model	at	the	
district	level	was	0.84%,	with	an	IQR	between	0.39	and	1.06,	com-
pared	to	0.85%	with	an	IQR	between	0.29	and	1.15	for	the	observed	
proportion.	This	indicates	a	shrinkage	of	extreme	values	towards	the	
global	mean,	 an	 expected	 result	 due	 to	 spatial	 smoothing.	 Finally,	
the	Pearson	correlation	coefficient	between	the	predictions	of	the	
full	 model	 at	 the	 ED	 locations	 and	 the	 leave-	one-	out	 predictions	
was	0.98,	with	a	mean	error	of	0.0007	and	a	mean	absolute	error	of	
0.0012	 (Figure	3C).	Overall,	 our	model	performed	better	 than	 the	
standard	Kriging	method	 (Section	4	 in	Appendix	S1).	 In	particular,	
Kriging	predictions	at	the	district	level	underestimated	influenza	ac-
tivity	 (mean	error	of	-	0.25%,	15	times	higher	than	the	MBG	mean	
error)	and	the	correlation	coefficient	for	the	leave-	one-	out	predic-
tions	 at	 the	ED	 locations	was	 lower	 (r = 0.84)	 than	with	 the	MBG	
model.

5  | DISCUSSION

Disease	maps	are	more	and	more	often	used	in	infectious	diseases	
epidemiology,	 as	 they	 are	 efficient	 surveillance	 and	 control	 tools.	
However,	 due	 to	 the	 complex	 nature	 of	 spatial	 data	 and	manage-
ment	of	uncertainty	in	the	estimates,	the	generation	of	such	maps	

F IGURE  1 Weekly	proportion	of	influenza-	coded	cases	
among	all	coded	visits	by	hospital	emergency	departments	of	the	
Oscour®	network	during	the	2016-	2017	influenza	season	in	France.	
Stars	show	the	3	weeks	for	which	detailed	results	and	maps	are	
presented.	The	dashed	grey	lines	delimit	the	epidemic	period.



     |  5PAIREAU et al.

must	 be	 performed	with	 care	 to	 provide	 an	 unbiased	 representa-
tion	of	disease	spatial	patterns.	Here,	we	have	developed	a	Bayesian	
geostatistical	model	to	create	weekly	maps	of	 influenza	activity	 in	

the	 ED	 setting	 in	metropolitan	 France.	Our	model	 allows	 produc-
ing	smoothed	maps	where	the	random	noise	has	been	properly	re-
moved	to	reveal	 the	spatial	 risk	surface,	and	 is	not	constrained	by	

F IGURE  2 Maps	for	weeks	49,	50	and	51	of	2016.	A,	Observed	proportion	of	influenza-	coded	cases	at	each	ED	locations;	B,	Posterior	
mean	of	predicted	proportion	on	the	2	×	2	km	grid;	C,	Relative	uncertainty	associated	with	the	predicted	proportion,	quantified	using	the	
coefficient	of	variation	and	ordered	into	quintiles	such	that	areas	in	quintile	one	have	the	smallest	uncertainty	and	quintile	five	the	largest.	
Grey	borders	delimit	administrative	districts	(N	=	96).
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administrative	boundaries.	This	makes	the	interpretation	of	the	data	
easier.	The	model	has	been	incorporated	into	the	national	syndromic	
surveillance	 system,	 as	 described	below.	We	provided	 the	R	 code	
so	that	the	model	can	be	more	widely	applied	to	other	countries	or	
diseases.

Spatial	 interpolation	of	disease	rates	can	be	performed	using	a	
variety	 of	 simple	 techniques,	 including	 inverse	 distance-	weighted	
methods,	splines	or	trend	polynomial	surfaces.	The	main	limitations	
of	these	deterministic	methods	 is	that	they	do	not	provide	a	mea-
sure	of	the	reliability	of	the	predictions	and	do	not	take	advantage	of	
the	spatial	structure	of	the	variable.10,22	In	1992,	Carrat	and	Valleron	
were	the	first	to	apply	Kriging	to	the	spatial	analysis	of	an	infectious	
disease.	At	that	time,	Kriging	was	a	real	 improvement	over	the	ex-
isting	approaches	as	it	made	use	of	the	spatial	correlation	between	
observations	and	allowed	for	estimation	of	the	interpolation	error.10 
However,	traditional	Kriging	is	not	well	suited	to	the	analysis	of	dis-
ease	rates	as	it	does	not	take	into	account	the	underlying	population	
size,	while	rates	computed	from	sparsely	populated	areas	tend	to	be	
less	reliable,22	and	works	best	for	data	that	follow	a	normal	distribu-
tion,	which	is	hardly	fulfilled	with	counts	or	proportions.23	 Indeed,	
non-	Gaussian	observations	 can	affect	 the	variogram	estimate	and	
lead	 to	 incorrect	 conclusions,	 as	 shown	 by	 our	 supporting	 analy-
sis.	Although	trans-	Gaussian	Kriging	can	be	used	to	overcome	this	
issue,7	we	showed	that,	in	our	case,	the	Kriging	predictions	were	less	

accurate	than	the	MBG	predictions	and	that	Kriging	may	underesti-
mate	uncertainty	in	the	predictions.	Uncertainty	attached	to	model	
parameters	is	indeed	ignored	in	the	analysis,	which	typically	leads	to	
too	small	prediction	variances.24	To	overcome	the	issues	associated	
with	standard	Kriging,	we	chose	to	use	a	Bayesian	model-	based	geo-
statistical	 approach.	Other	 alternatives	 have	been	proposed,	 such	
as	 using	Poisson	 kriging22	 or	 assessing	 variogram	uncertainty	 in	 a	
Bayesian	 framework.25	Bayesian	geostatistical	models	 such	as	 the	
one	developed	in	this	study	are	appropriate	for	non-	Gaussian	data,	
by	specifying	an	explicit	stochastic	model,	and	yield	the	full	posterior	
distribution	of	 the	risk	while	accounting	for	the	uncertainty	 in	the	
model	 parameters	 (such	 as	 the	 shape	 of	 the	 covariance	 function).	
They	have	been	shown	to	be	valuable	methodologies	for	generating	
predictive	prevalence	and	risk	maps	for	malaria,16,26	shistosomiasis27 
or	poverty,28	 among	others.	 In	our	model,	 the	 spatial	dependence	
was	defined	using	a	Matérn	covariance	function.	We	observed	that	
the	spatial	range	r,	a	parameter	of	this	covariance	function,	was	in-
creasing	during	the	ascending	phase	of	the	epidemic,	as	the	epidemic	
spread	through	the	country	and	the	affected	areas	become	larger.	As	
spatial	correlation	is	mainly	due	to	population	connectivity	between	
locations,	 parameters	 of	 a	mechanistic	model	 explicitly	 describing	
flows	of	individuals	would	be	fixed	over	time.	But	here,	this	under-
lying	mechanism	 is	approximated	with	a	phenomenological	model,	
leading	r	to	vary	over	time.

Parameter Week 49 Week 50 Week 51

Intercept,	α −6.50	(−6.32,	−5.81) −5.55	(−5.84,	−5.30) −4.70	(−4.94,	−4.47)

Standard	deviation	of	
the	noise,	σe

0.74	(0.62,	0.88) 0.71	(0.61,	0.81) 0.51	(0.39,	0.68)

Spatial	range	of	the	
GF,	r	(km)

168	(81,	326) 176	(94,	310) 227	(119,	411)

Marginal	standard	
deviation	of	the	GF,	σ

0.57	(0.40,	0.77) 0.64	(0.47,	0.91) 0.62	(0.56,	0.70)

TABLE  1 Posterior	mean	(95%	credible	
interval)	of	the	model’s	parameters	for	
3	weeks	in	December	2016

F IGURE  3 Model	assessment	for	weeks	49-	51.	A,	Scatterplot	of	fitted	and	observed	proportions	of	influenza-	coded	cases,	at	each	ED	
locations.	For	scale	reasons,	one	outlier	was	not	represented	on	the	graph:	observed	proportion	of	100%	(1	influenza-	coded	case	among	
1	coded	visit)	for	a	predicted	proportion	of	5%;	B,	Scatterplot	of	predicted	and	observed	proportions,	averaged	at	the	district	level;	C,	
Scatterplot	of	predictions	of	the	full	model	at	ED	locations	and	the	leave-	one-	out	predictions.	Point	size	is	weighted	by	the	number	of	all	
coded	visits.	The	dashed	line	is	the	bisector.
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Beyond	the	 implementation	of	an	appropriate	statistical	meth-
odology,	 generating	 reliable	 disease	 maps	 also	 requires	 the	 avail-
ability	of	high-	quality	data.	In	this	study,	we	have	used	the	Oscour® 
network,	which	gathers	daily	data	from	ED	visits	in	France.	The	data	
are	automatically	extracted	from	the	computerized	medical	files	that	
are	filled	by	clinicians	as	part	of	their	routine	activities,	and	transmit-
ted	every	day,	avoiding	 the	 reporting	delays	 that	can	 impair	other	
surveillance	systems,	without	 requiring	additional	efforts	 from	cli-
nicians	provided	that	they	have	a	business	software	for	emergency	
medicine.	This	gives	a	very	detailed	picture	of	the	daily	situation	in	
secondary	health	 care	 all	 over	 the	 country,	 this	 information	being	
of	great	importance	for	healthcare	managers.	Although	this	surveil-
lance	might	have	suffered	from	limited	spatial	representativeness	in	
some	regions	during	its	first	years	of	existence,29	the	network	now	
includes	92%	of	 all	 visits	 and	gives	 a	 satisfactory	 coverage	of	 the	
metropolitan	territory	in	all	regions.	As	our	model	is	able	to	produce	
good	estimates	 in	unsampled	 locations,	we	are	 confident	 that	our	
maps	are	representative	of	the	spatial	risk	surface	in	all	regions,	with	
good	spatial	resolution.

In	 this	 study,	 we	 used	 as	 a	 risk	 indicator	 the	 proportion	 of	
influenza-	coded	cases	among	all	coded	visits,	as	previously	carried	
out	by	others.30,31	This	allowed	us	to	account	for	the	variability	in	
the	 volumes	of	 visits	 among	EDs,	 and	 the	 proportion	of	 coding,	
which	 can	vary	over	 space	 and	 time	 (Section	2	 in	Appendix	 S1).	
One	limitation	of	this	measure	of	risk	is	its	sensitivity	to	the	“case	
mix,”	 that	 is	 the	variability	 in	 the	number	of	noninfluenza	cases,	
which	can	bias	the	proportion	of	influenza-	coded	cases	if	unusual	
variations	are	observed.	The	number	of	noninfluenza	cases	did	not	
display	large	temporal	variations	over	the	study	period	and	there-
fore	should	not	substantially	affect	the	observed	trends	(Section	2	
in	Appendix	S1).	However,	we	cannot	rule	out	that	the	proportion	
of	 influenza-	coded	cases	might	be	 impacted	by	the	spatial	varia-
tions	in	the	case	mix.	The	ICD-	10	codes	used	to	classify	cases	as	
influenza	are	not	perfectly	sensitive	nor	specific	to	influenza	but	
we	have	no	reason	to	think	that	coding	practices	significantly	dif-
fered	among	EDs.	 In	addition,	the	proportion	of	 influenza-	coded	
cases	is	a	mixture	of	the	true	influenza	risk	in	the	general	popula-
tion	and	the	care-	seeking	behaviours,	which	depend	on	(a)	the	se-
verity	of	the	virus	(ED	surveillance	systems	tend	to	capture	more	
severe	 cases),	 (b)	 the	ease	of	 access	 to	 an	ED	 (the	 risk	might	be	
underestimated	in	areas	where	access	to	EDs	is	more	difficult,	due	
to	lower	density	of	health	services	and	longer	travel	time	to	hos-
pitals)	and	(c)	the	socioeconomic	status	(the	risk	might	be	overes-
timated	in	neighbourhoods	with	lower	socioeconomic	status	that	
have	no	access	to	a	GP).	Thus,	our	maps	must	be	primarily	seen	as	
the	spatial	representation	of	the	influenza	risk	 in	the	ED	setting.	
This	data	set	 is	complementary	to	another	 influenza	surveillance	
system,	the	Sentinelles	network	of	volunteer	GPs,	which	monitors	
influenza	 consultations	 in	 general	 practice	 and	 produces	 maps	
using	 Kriging.10	 It	 has	 been	 shown	 that	 data	 from	 both	 sources	
followed	similar	temporal	patterns.6	Spatial	patterns,	however,	are	
not	expected	 to	be	directly	 comparable.	First,	 they	do	not	mea-
sure	 the	 same	 risk	 and	 populations	 are	 different	 regarding	 age	

distribution	and	severity	profiles.13	Second,	the	Oscour®	network	
generates	a	 larger	volume	of	data	 (number	of	cases	 is	 five	 times	
higher	 than	 in	 the	 Sentinelles	 network)	 and	 has	 a	 better	 spatial	
resolution	(on	average	~650	participating	EDs	by	week,	compared	
to	~260	GPs	participating	in	the	Sentinelles	network	by	week).32 
Third,	 the	 Sentinelles	maps	 are	 produced	by	 applying	Kriging	 to	
incidence	estimated	at	the	district	level	(ie,	only	96	spatial	points),	
without	taking	into	account	their	precision	(which	depends	on	the	
number	of	participating	GPs	by	district).10

For	our	 results	 to	 efficiently	 support	 surveillance	 and	be	 ac-
cessible	to	public	health	professionals,	it	is	essential	that	they	are	
integrated	 in	an	effective	 information	flow	where	data	are	gath-
ered,	analysed	and	reported	on	a	weekly	basis.	This	is	performed	
through	 the	 intranet	 online	 application,	 called	MASS,	which	 has	
been	 developed	 by	 Santé	 publique	 France	 to	 provide	 their	 epi-
demiologists	with	an	easy	access	to	up-	to-	date	surveillance	data	
from	specific	 and	 syndromic	 surveillance	 systems	and	 to	 the	 re-
sults	 of	 statistical	 analyses	 of	 the	 epidemiologic	 risk.13 One aim 
of	this	study	was	to	complete	this	surveillance	tool	by	developing	
automated	disease	mapping.	The	algorithm	that	we	developed	in	
R	was	thus	added	to	MASS	so	that	weekly	disease	maps	can	now	
be	visualized.	Along	with	the	smoothed	influenza	activity	map,	the	
algorithm	output	 also	 provides	 an	 uncertainty	map.	 Indeed,	 it	 is	
important	that	scientists	better	communicate	about	uncertainties	
in	model	estimates	as	this	might	potentially	affect	 interpretation	
of	 the	 data.	 Uncertainty	 in	 our	 results	 arises	 from	 at	 least	 four	
sources:	 low	density	 of	 data	 sources	 in	 some	 areas,	 low	volume	
of	 visits	 in	 some	EDs,	 uncertainty	 in	 the	 spatial	 parameters	 and	
inherent	spatial	heterogeneity	in	influenza	proportions	that	occurs	
over	short	spatial	scale	and	that	cannot	be	explained	by	the	data	
and	modelling	 approaches.	 This	 latter	 component	 of	 variation	 is	
captured	as	“noise”	(randomness)	by	the	geostatistical	model	and	
the	smoothing	process	causes	the	loss	of	local	details	of	the	spatial	
variation	 in	 risk.	 But	 the	model	 ensures	 that	 the	 degree	 of	 ran-
domness	is	measured	and	incorporated	in	the	predicted	posterior	
distributions	at	each	pixel.16

This	framework	can	be	the	basis	for	future	developments,	to	in-
clude	the	temporal	dimension,	as	well	as	population	movements	and	
connectivity	for	instance.	Our	algorithm	could	also	be	easily	applied	
to	other	countries	or	any	other	diseases	monitored	by	a	surveillance	
system	 where	 cases	 are	 geographically	 referenced.	 Although	 our	
approach	was	mainly	descriptive,	with	the	aim	of	supporting	surveil-
lance,	 further	 research	should	aim	at	developing	methods	 for	pre-
dicting	influenza	activity	in	the	ED	setting	in	order	to	support	local	
healthcare	planning.
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