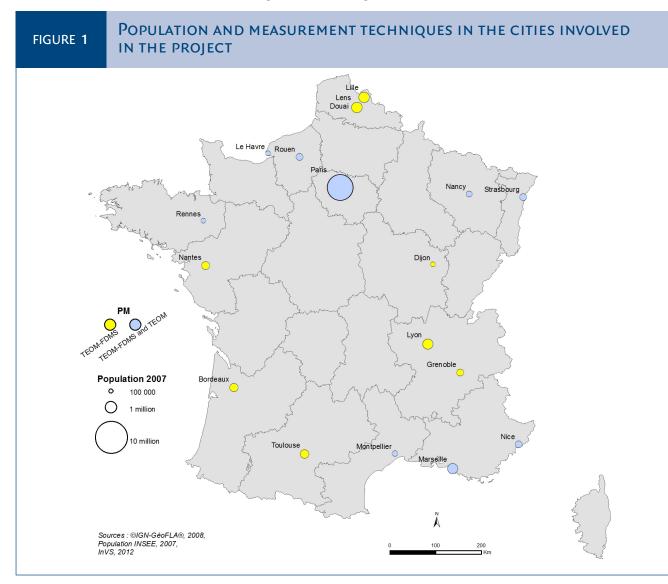
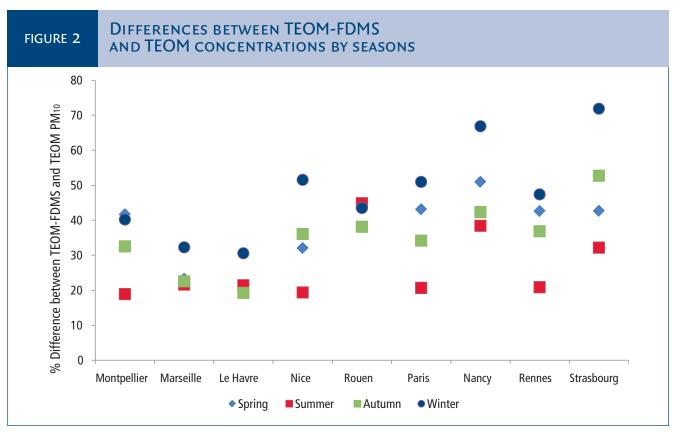
Influence of the PM₁₀ measurement techniques on the assessment of the short-term mortality impacts of PM₁₀

M. Pascal¹, M. Corso¹, V. Wagner¹, E. Chatignoux², C. Declercq¹ 1/ Institut de veille sanitraire (InVS) – 2/ Observatoire régional de la santé (ORS) lle-de-France

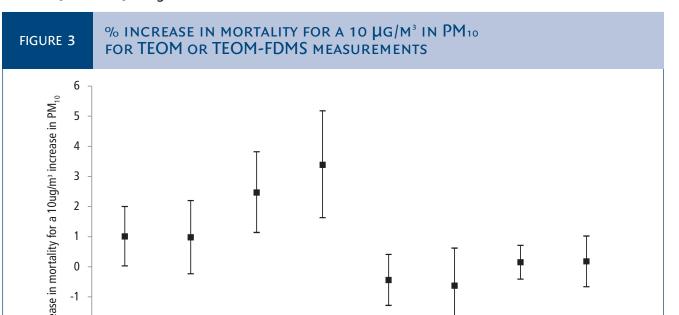
Background


In France, before 2007, particulate matter (PM) levels were measured with Tapered Element Oscillating Microbalance (TEOM). This technique requires a heating of the device up to a temperature above ambient levels, resulting in the evaporation of the water and of the semi-volatile components of the PM. It systematically under-estimates PM concentrations compared to the gravimetric reference method.


Since 2007, concentrations are measured with TEOMs equipped with a Filter Dynamics Measurement System (TEOM-FDMS), which corrects for the loss of semi-volatile compounds, and provide values consistent with the gravimetric method [1].

We investigate how this change in the measurement technique influences the estimates of the short-term impacts of PM₁₀ on mortality.

Methods


The study was part of a larger study involving 17 French cities. The analysis was performed for the period 2007-2010 for the 9 cities where the TEOM and TEOM-FDMS PM₁₀ were recorded simultaneously. In the other cities, the TEOM values are no longer available (figure 1).

For the whole year, the mortality increased by 0.37% [CI 95% -0.01:0.75] for an increase of 10 μ g/m³ of TEOM-FDMS PM₁₀. It was of 0.51% [-0.07:1.09] when using TEOM PM₁₀.

By season, estimates obtained with TEOM-FDMS or TEOM PM₁₀ data were also similar. The highest effect was observed for summer, with a +2.47 % [1.14:3.83] increase in mortality with TEOM-FDMS *vs* a 3.39% increase [1.63:5.18] using TEOM PM₁₀.

The association between daily background levels of PM₁₀ and daily non-accidental mortality was investigated in each city following APHEA-2 protocol [2] using a Poisson regression model controlling for possible confounders (temperatures, long-term and seasonal trends, day of the week, and bank holiday effects). The mean levels of PM₁₀ observed during the current and the previous day were introduced as a linear term. Mean temperatures at lag 0 and 1-7 were introduced as natural splines with 3 degrees of freedom.

The percent increase in the mortality rate was estimated for a 10 µg/m³ increase in PM₁₀ levels in each city for the whole year and by season (Winter: December-February, Spring: March-May, Summer: June-August, Autumn: September-November). City specific results were combined using random effect models.

Results

The daily mean number of deaths ranged from 104 in Paris to 4 in Rennes (table 1).

On average TEOM-FDMS PM₁₀ concentrations were 20 to 50% larger than TEOM concentrations (table 1). Even during summer, when less heating is required and the loss of volatile compounds is reduced TEOM-FDMS concentrations were at least 20% larger than TEOM concentrations. Differences were up to 70% larger during winter for all cities except Rouen (figure 2).

City	Population	Mean Non-accidental	Mean Daily PM₁₀ TEOM	Mean Daily PM10 (TEOM-FDMS)	
		daily mortality	(µg/m³)	(µg/m³)	
Paris	6 542 671	104	19.6	27	
Marseille 969 434		22	25.5	31.8	
Rouen 447 098		10	18.8	25.9	
Nice 441 924		12	20.7	29.2	
Strasbourg	440 704	8	17	25.6	
Nancy	331 521	7	17.6	23.9	
Montpellier 320 760		6	18.9	23.2	
Le Havre 242 587		6	18.4	24.6	
Rennes 239 412		4	14.6	21.9	

FRENCH INSTITUTE

FOR PUBLIC HEALTH SURVEILLANCE

% lncr	-2 -	-					T		
	-3 -	TEOM -FDMS	TEOM						
		Spring		Summer		Autumn		Winter	

Discussion

Large differences were observed between PM₁₀ concentrations obtained with TEOM or TEOM-FDMS, reflecting the weight of the semi-volatile compounds of PM.

Yet, the concentration-response functions were comparable, suggesting that the semi-volatile part of PM₁₀ has a health impact similar to the non-volatile part.

Concentration-response functions found with the TEOM or TEOM-FDMS PM₁₀ were consistent with those observed in a previous French multi-cities study (2000-2006), and with those obtained for a larger set of cities for the same period (table 2). They were also consistent with the estimates reported by Aphena for Europe [3].

TABLE 2

		% increase in mortality for a 10 $\mu\text{g/m}^{\scriptscriptstyle 3}$ in PM1
PM ₁₀ 2000-2006 9 cities (not the same cities) TEOM		0.2 [-0.5 ; 0.9]
PM10 2007-2010 9 cities TEOM		0.51 [-0.01; 1.09]
PM10 2007-2010 9 cities TEOM-FDMS		0.37 [-0.01; 0.75]
PM ₁₀ 2007-2010 17 cities TEOM-FDMS		0.30 [-0.01; 0.60]

Acknowledgments

We wish to give our special thanks to the air quality monitoring networks who supported this work with their data and expertise.

References

- [1] Hauck H, Berner A, Gomiscek B, Stopper S, Puxbaum H, Kundi M, *et al.* On the equivalence of gravimetric PM data with TEOM and beta-attenuation measurements. Journal of Aerosol Science 2004;35(9):1135-1149.
- [2] Touloumi G, Samoli E, Pipikou M, Le Tertre A, Atkinson R, Katsouyanni K. Seasonal confounding in air pollution and health time-series studies: effect on air pollution effect estimates. Stat Med 2006;25(24):4164-4178.

[3] Samoli E, Peng R, Ramsay T, Pipikou M, Touloumi G, Dominici F, *et al.* Acute effects of ambient particulate matter on mortality in Europe and North America: results from the APHENA study. Environ Health Perspect 2008;116(11):1480-6.